
SAB Diskette Utility Index

General Information
Author
Copyright
Disclaimer
Introduction
License
Credits

Commands
Read
Compare
Format
Write
Exit
Configure
Register

Initialization
First Time
Standard

Glossary
Definition of Terms

Stewart A. Berman

Mr Berman is an excutive with 20 years of experience in all aspects of MIS
development and management who has yet to decided what he wants to be
when he grows up.    He has worked as an electrical engineer (digital
corelation equipment and televison systems), programmer/analyst (electron
tube simulation), systems programmer (MFT, MVT, MVS, VM, IMS, CICS,
IDMS), and a manager and partner in a "Big Eight" (now "Big-Six")
accounting firm.    Along the way he has picked up    a bachelors and masters
in electrical engineering a masters in professional accounting, and passed
the CPA and CDP examinations.

Mr Berman is currently enjoying life -- if not making a living -- as an
independent consultant in New York.    His specialty is cleaning up the mess
others leave behind.    He will even do windows.

Mr Berman can be reached via CompuServe mail addressed to 76366,1664.   
He can also be reached via snail mail addressed to Stewart A. Berman, 34
Adler Place -- Suite B, Bronx, NY 10475.    Mr Berman is also a BBSer and is
known to hang out on InterLink in the C, Assembler, Technical, and Windows
conferences and on P/NET in the C and Assembler conferences.

Copyright

COPYRIGHT (c) 1990-1991 BY STEWART A. BERMAN    ALL RIGHTS RESERVED.

Contents may not be reverse engineered.

Resources may not be seperated from the rest of the system without the
written persmission of Stewart A. Berman.

Reproduction of the "ShareWare" package that makes up the SAB Diskette
Utility is permitted only if the entire SABDUnnn.ZIP file is copied.    Copies of
the entire SABDUnnn.ZIP file may be distributed free of charge.    Copies of
the entire SABDUnnn.ZIP file maybe included on "ShareWare" diskettes that
are sold provide that the buyer is clearly informed that they are paying for
the distribution costs and not for a license for the use of the software and
that they will still have to pay for the registration of SAB Diskette Utility if
they wish to use it beyond the ten day evaluation period.

Disclaimer

THIS PRODUCT IS OFFERED ON AN "AS-IS" BASIS.    THE AUTHOR MAKES
ABSOLUTELY NO CLAIM THAT IT WILL WORK AS DESCRIBED OR EVEN WORK
AT ALL.    THE AUTHOR DISCLAIMS ALL RESPONSIBILITY FOR DAMAGES
CAUSED BY THE FAILURE OF THIS PRODUCT.    YOU HAVE A TEN DAY
EVALUATION PERIOD TO DETERMINE WHETHER OR NOT THIS PRODUCT
MEETS YOUR NEEDS.    REGISTRATION OF THIS PRODUCT GIVES YOU A
LICENSE TO CONTINUE USING IT.    IT DOES NOT PROVIDE ANY GUARANTEE
THAT IT WILL CONTINUE TO WORK OR EVEN CONTINUE TO RUN.

YOUR USAGE OF THIS PRODUCT INDICATES YOUR WILLINGNESS
TO ACCEPT COMPLETE RESPONSIBILITY FOR ITS USE.

Introduction

SAB Diskette Utility is a Windows 3 application that provides the user with a
set of services that makes the copying, comparing, and formatting of
diskettes a pleasure instead of a pain.    It makes use of the Input/Output
(IOCTL) interface to read/format/write a track at a time..    It will copy, in a
single pass, the entire contents of a diskette, at the sector level, into an
image either in memory or in a tempory hard disk file.    The image can then
be used to produce multiple copies of the original diskette.    The system
makes use of Windows 3 Messages and Timers to work cooperatively with
other Windows 3 applications.    It can be run entirely in Iconic mode.

License

HIS PRODUCT IS NOT FREE.    IT IS OFFERED ON A "SHAREWARE" BASIS.    YOU
HAVE A TEMPORARY LICENSE TO USE THIS PRODUCT FOR TEN DAYS TO
EVALUATE ITS USEFULNESS TO YOU.    IF YOU WISH TO KEEP USING IT YOU
MUST REGISTER IT.

The difference types of licenses available are:

Home Use: This license gives the user the right to install a copy of SAB
Diskette Utility on one non-commercial machine used at home.    The cost of
this license is $10 (US).

Business - Single User:    This license gives the user the right to install a copy
of SAB Diskette Utility on one CPU used in the performance of the user's
business.    The cost of this license is $15 (US).

Business - Site:    This license gives the user the right to install a copy of SAB
Diskette Utility on all machines used in the performance of the user's
business at one location. The cost of this license is $100 (US).

Business--Unlimited:    This license gives the user the right to install a copy of
SAB Diskette Utility on all machines used in the performance of the user's
business anywhere in the world.    The cost of this licens is $250 (US).

The business licenses also give one user of each of those machines the right
to install SAB Diskette Utility on a non-commercial machine used at home.   
This right to use SAB Diskette Utility at home ceases if the user leaves the
company holding the business license.

To register it select the registration option on the main menu, fill in the
information, print the completed form, sign it, and send it with a check for
the appropriate amount to the address shown on the form.

Credits

The development of this program was aided by the generous assistance of
many people through the InterLink BBS network and the CompuServe
network.    They have been a continuing source of information, including
coding examples, without which it would have been impossilbe to complete
this product.

It should be noted that the help information for the use of the keys comes
from an example provided with the Microsoft Software Development Kit
(SDK) for Windows.    It was included to insure that the key usage description
was consistent with other Windows based products.

Read

The read command will use the Input/Output Control read (IOCTL READ)
subfunction to read all of the sectors on a diskette into an image in memory
or an image on hard disk in a single pass.    The decision to use a memory
image or a hard disk image can be made automatically by the system based
on available resources or it can be forced by the user through the disk
spooling option that can be set using the configure command    The read
command uses Windows 3 messages and Timers to work cooperatively with
other WIndows 3 applications in sharing the systems resources.

To invoke the read command "click" on the read menu item or press the Alt
key and then the R key.    A window will open with instructions to insert the
diskette into the appropriate diskette drive and press the button
corresponding to the drive.    A cancel button is also available to terminate
the read command at this point.

The system will read the contents of the diskette a track at a time.    It reads
all of the tracks on a cylinder before using Windows 3 messaging and Timers
to give up control to other Windows applications.

The read command will display a window with a completion notice when it
finishes reading all of the sectors on the diskette.    It will also enable the
menu items that require a completed diskette image to work (compare and
write).

Compare

The compare command compares the contents of an image in memory or an
image on hard disk with the contents of a diskette. It uses the Input/Output
Control read (IOCTL READ) subfunction to read all of the sectors on a track at
a time into memory.    It then compares the contents of the track with the
stored image.    If there are no differences it will proceed to the next track.    If
there are any differences it will ask the users whether to stop the compare
function or to continue anyway with the next track.    It compares all of the
tracks on a cylinder before using Windows 3 messages and Timers to give up
control to other Windows applications.

To invoke the compare command "click" on the compare menu item or press
the Alt key and then the C key.    A window will open with instructions to
insert the diskette into the appropriate diskette drive and press the button
corresponding to the drive.    A cancel button is also available to terminate
the compare command at this point.

The compare command will display a window with a completion notice when
it finishes comparing all of the sectors on the diskette.

Format

The format command formats an entire diskette.    The format command uses
Windows 3 messaging and Timers to work cooperatively with other WIndows
3 applications in sharing the systems resources.

To invoke the format command "click" on the format menu item or press the
Alt key and then the F key.    A window will open with instructions to insert the
diskette into the appropriate diskette drive and press the button
corresponding to the drive.    The System option can be selected by "clicking"
on it.    A cancel button is also available to terminate the format command at
this point.    If the selected diskette drive supports more than one format
mode a pop-up menu will be displayed listing the available formatting
modes.

The format command will attempt to read the first sector and analyze the
Diskette Parameter Table (DPT) before formatting.    If it can read the first
sector and the format mode of the diskette does not match the format mode
requested it will terminate the format operation.

Formatting is done using the Input/Output Control format (IOCTL FORMAT)
subfunction to format a track at a time.    It formats all of the tracks on a
cylinder before using Windows 3 messaging and Timers to give up control to
other Windows applications.

The format command will display a window with a completion notice when it
finishes formatting the entire diskette.

NOTE: The format command will stop if there are bad sectors on the diskette.
It will prompt for a retry/cancel/ignore response from the user.    A resonse of
ignore will cause the format to continue and the cluster(s) containing the bad
sector(s) to be maked as bad in the diskette's File Allocation Table.

Write

The write command will use the Input/Output Control write (IOCTL WRITE)
subfunction to write all of the sectors on a diskette from an image in memory
or an image on hard disk in a single pass.    The write command uses
Windows 3 messaging and Timers to work cooperatively with other WIndows
3 applications in sharing the systems resources.

To invoke the write command "click" on the read menu item or press the Alt
key and then the W key.    A window will open with instructions to insert the
diskette into the appropriate diskette drive and press the button
corresponding to the drive.    A cancel button is also available to terminate
the write command at this point.

The system will write the contents of the diskette a track at a time.    It writes
all of the tracks on a cylinder before using Windows 3 messaging and Timers
to give up control to other Windows applications.

The write command will display a window with a completion notice when it
finishes writing all of the sectors on the diskette.

Exit

The exit command terminates SAB Diskette Utility.    It will also save the users
preferences in the SAB.INI file.

To invoke the exit command "click" on the exit menu item or press the Alt
key and then the X key.

Cancel

The cancel command can be used to stop any of the long running SAB
Diskette Utility functions.    It is only enabled during read, compare, format,
and write command operations.

To invoke the cancel command "click" on the cancel menu item or press the
Alt key and then the N key.

Help

The help command provides access to the on-line help for SAB Diskette
Utility.    It also provides access to the "About Box" that identifies the
copyright owner.

To invoke the help command "click" on the help menu item or press the Alt
key and then the H key.

Configure

The configure command provides the user with the ability to select the
appropriate settings for the maximum and minimum Timers, the desired
image spooling option, the desired format while writing option, and to
change diskette drive definitions.

The maximum timer defines the maximum number of milliseconds (.001
seconds) that the system will allow other applications to run before resuming
the current operation.    The default setting of 9999 disables the use of this
timer.    The way the system is designed it should not be necessary to use
this timer unless there are a number of not well behaved Windows
applications running and Windows is not providing enough time for the
system to complete its operations in a reasonable time.    It can also be used
to convert the system into a not well behaved Windows application by
setting it to zero.    Please note that setting the maximum timer to zero will
also disable the ability to cancel an operation in process.

The minimum timer defines the minimum number of milliseconds that the
system will wait before even attempting to get scheduled.    The default
setting of zero disables the use of this timer.    The way the system is
designed it should not be necessary to use this timer unless there the
interruption caused by repeated diskette operations is disruptive to time
critical applications running at the same time.    The use of this timer will
increase the time between diskette accesses.    Unfortunately Windows 3
does not provide the ability to have other tasks use the CPU while one task is
waiting for a diskette operation to complete.    Since diskette operations take
a relatively long time a series of closely executed ones might prove
disruptive to other applications running at the same time.

The A: and B; drive types define the way the system thinks the drives can be
used.    It should not be necessary to change this unless a drive is replaced,
added, or removed.    However, it is possible that the actions of other
applications may have changed the drive definitions just before the first use
of the system and it therefore failed to define them properly.    If it is
necessary to change a definition simply "click" on the new one.

The hard disk spooling option defines whether the system will always use the
hard drive for the diskette image, never use the hard drive for the diskette
image, or only use the hard drive for the diskette image if insufficient
memory is available.

The format option defines whether the system will always format the output
diskette when writing to it, never format the output diskette, or format the
output diskette only when it cannot read it.   

Register

The register command is used to enter the user's name, company name (if
not a personal use license), address, phone number, and the registration key
and to print a registration form.    The first time the system is used the user's
name and address should be entered and saved.

The user key is generated by the system at the time the registration
information is saved or printed.    It will be used as a check that the user
information has been correctly processed during the generation of the
registration key.

The registration key will be sent to the user after the registration agreement
and fee have been received by the author.

The registration type should be selected by "clicking" on the option desired.   
Please note that the choice of a home use registration will force the company
name to "Personal Copy".

After all of the information, except the registration key, has been entered a
registration form can be printed by pressing the Print button.    That will print
a registration form and save the user's information.    Pressing the Save
button will save the information without printing a registration form.   
Pressing the Cancel button will terminate the registration command without
saving the information.

The information is saved in the SAB.INI file.

First Use

The first time SAB Diskette Utility is used it will display a screen that
describes the evaluation terms and one that explains the disclaimer.    The
user has the option to stop the installation process at that time if they do not
want to abide by the terms shown by pressing the Cancel button.    Pressing
the OK button accepts the terms and continues the installation.

The menu bar will have all of the menu items disabled except the Exit and
Registration commands.    The Registration command should be used to enter
and save the user's name and address.    Once that is done the other
commands will be enabled.

Standard Initialization

The SAB Diskette Utility uses a private INI file to store parameters in.    The
name of the file is SAB.INI.    It will be created in the Windows directory the
first time the system is used.

During initialization the system will obtained the size and position of the
main application window the last time the system was used.    It will also
obtain information stored during the use of the configuration and registration
commands.    These items will be used to initialize the window and diskette
drive control structures.

System Option

Selecting the System Option indicates that the target diskette is to be made
"bootable".    This entails copying the DOS boot sector from the C: drive,
changing the parameter table to the appropriate values for a Diskette
Parameter Table (DPT), and installing it as the first sector on the target
diskette.    The two hidden system files are then copied from the C:\ (root)
directory to the target diskette.    Finally, the file pointed to by the
COMSPEC= environment variable (usually COMMAND.COM) is copied to the
target diskette.    The diskette can then be used to "boot" from to start DOS.

It should be noted that since different vendors sometimes use different
names for the system files there isn't any validation check on the names --
the first two files in the root directory of the C: drive are copied.

Windows Messages

Windows' applications process and send "messages".    A "message" contains
information about an event that has occurred.    For example, "clicking" on a
menu item generates a "message".

An application can also generate and process user defined "messages".   
Each portion of the application can be viewed as a closed subsystem that
receives a "message", performs a task, and returns control.    Part of the task
performed might be the generation of another "message".

SAB Diskette Utility makes use of the Windows messaging system to control
the flow of control through the application.    Consider the read command -- it
is made up of three sections.    The initialization section receives the
"message" generated when the read menu item is "clicked".    It prompts for
the diskette and invokes a service routine to analyze the Diskette Parameter
Table (DPT) and determine the number of cylinders, heads, and sectors/track.
It then sets the current cylinder, head, and track variables to zero and sends
a "message" to the read cylinder section.

The read cylinder section reads all of the sectors on a cylinder and stores
them.    It then increments the cylinder variable and checks to see if there are
more cylinders to read. If there are more cylinders to read it sends a
"message" to itself to schedule the next cylinder read.    If there aren't any
more cylinders to read it sends a "message" to the read termination routine
which displays the read completed message and then ends without sending
any "messages".

The "messages" aren't sent immediately.    They are placed into a holding
variable and only sent if Windows indicates that there isn't any other work
available for it to schedule.    At that point the system places the message
into the applications queue and it is processed and the function scheduled.

Timers

SAB Diskette Utility can use Windows' timers to control the scheduling of its
internal operations.    The way the system uses the timers is to start a timer
and request that Windows send a special "message" when the time interval
ends.    That "message" causes a function to execute.    Consider the
maximum timer available through the configure.    Let us assume that a read
cylinder operation has just completed and that there are more cylinders to
read.    The system puts a read cylinder "message" into a holding variable.   
The "message" will normally be sent the next time Windows has nothing to
do.    However, if the maximum timer value has be set the system will also
start a timer.    If Windows has nothing to do before the timer expires the
"message" will be sent and, as part of the application code that does that,
the timer will be stopped.    If Windows does not run out of other things to do
before the timer expires a timer "message" will be sent to the application.   
When the application receives the "message" it will check and see that it has
a "message" to send and send it at that time scheduling the next read
cylinder cycle.

Iconic Operation

SAB Diskette Utility can operate completely in the Iconic mode.    The Iconic
mode is when an application's window has been minimized.    It then normally
displays an Icon in the lower portion of the display.

The system monitors changes to and from the Iconic mode.    When the user
puts the system into the Iconic mode it modifies the system menu by adding
all of the menu items that would normally appear on the menu bar.    It
removes the menu items when the user takes the system out of Iconic mode.

The system will also use the space normally occupied by an Icon to display
the current cylinder for read, compare, format, and write operations.   
Otherwise it will display its own Icon.

IOCTL

Input/Output Control (IOCTL) is a method of communicating directly with a
device driver.    SAB Diskette Utility uses the set of subfunctions associated
with generic I/O control for block devices.    The IOCTL interface is accessed
through an interrupt call (INT 21H -- the general DOS interrupt -- with
AH(function) = 44H, AL(subfunction) = 0DH, BL = drive number, and CH =
08H) using a Parameter Block pointed to by DS:DX.    The minor subfunctions
used are:
CL = 40H Set Device Parameters
CL = 41H Write track on logical drive
CL = 42H Format and verify track on logical drive
CL = 60H Get Device Parameters
CL = 61H Read track on logical drive

Diskette Parameter Table

The Diskette Parameter Table (DPT) is located at the begining of the first
physical sector on a diskette.    It can be mapped in C using the following
structure:
#pragma pack(1)
typedef struct
              {
              unsigned char    DSKJMP[3];
              unsigned char    DSKID[8];
              unsigned short DSKSECBY;
              unsigned char    DSKCLUSC;
              unsigned short DSKRESSC;
              unsigned char    DSKFATS;
              unsigned short DSKROOTD;
              unsigned short DSKSECTS; Total sectors
              unsigned char    DSKFMTID;
              unsigned short DSKFATSC;
              unsigned short DSKTRKSC; Sectors per track
              unsigned short DSKHEADS; Number of heads
              unsigned long    DSKSPEC;
              unsigned long    DSKBIGTL;
              unsigned char    DSKPHYDR;
              unsigned char    DSKRESER;
              unsigned char    DSKEXNTD;
              unsigned long    DSKSRLNO;
              unsigned char    DSKVOLLB[11];
              unsigned char    DSKFATTP[8];
              } DSKPARAMS ;
#pragma pack()
Note the pack(1) pragma.    Otherwise the C compiler will align the long
variables on an even boundary and the mapping will fail.

IOCTL Parameter Blocks

The IOCTL Parameter Blocks can be mapped in C with the following
structures:
#define IOCTLSETPARAMETERS      0x40
#define IOCTLWRITETRACK            0x41
#define IOCTLFORMATTRACK          0x42
#define IOCTLGETPARAMETERS      0x60
#define IOCTLREADTRACK              0x61
#define IOCTLVERIFYTRACK          0x62

#pragma pack(1)
#ifndef PARAMETER_BLOCK_SWITCH
#define PARAMETER_BLOCK_SWITCH
typedef struct
                {
                BYTE PB_SpecialFunction ;
                #define PB_SPCFUNC_USECUR    0x01
                #define PB_SPCFUNC_TRKONLY 0x02
                #define PB_SPCFUNC_SECSAME 0x04
                BYTE PB_DeviceType ;
                #define PB_DEVTYPE_0320 0x00
                #define PB_DEVTYPE_0360 0x00
                #define PB_DEVTYPE_1200 0x01
                #define PB_DEVTYPE_0720 0x02
                #define PB_DEVTYPE_SD8I 0x03
                #define PB_DEVTYPE_DD8I 0x04
                #define PB_DEVTYPE_FXDK 0x05
                #define PB_DEVTYPE_TPDR 0x06
                #define PB_DEVTYPE_1440 0x07
                #define PB_DEVTYPE_OTHR 0x08
                WORD PB_DeviceAttribute ;
                #define PB_NOREMOV 0x0001
                #define PB_DRLOCK    0x0002
                WORD PB_Cylinders ;
                BYTE PB_MediaType ;
                #define PB_MEDTYPE_1200 0x00
                #define PB_MEDTYPE_0320 0x01
                #define PB_MEDTYPE_0360 0x01
                WORD PB_BytesPerSector ;
                BYTE PB_SectorsPerAllocationUnit ;
                WORD PB_ReservedSectors ;
                BYTE PB_FATS ;
                WORD PB_RootDirectoryEntries ;
                WORD PB_TotalSectors ;
                BYTE PB_MediaDescription ;

                WORD PB_SectorsPerFAT ;
                WORD PB_SectorsPerTrack ;
                WORD PB_Heads ;
                DWORD PB_HiddenSectors ;
                BYTE PB_Reserved[10] ;
                WORD PB_SectorsInTrack ;
                struct
                      {
                      WORD Number ;
                      WORD Size ;
                      } PB_SectorTable[18] ;
                } PARAMETER_BLOCK ;
typedef PARAMETER_BLOCK FAR *LPPB ;

typedef struct
                {
                BYTE PBF_SpecialFunction ;
                WORD PBF_HeadNumber ;
                WORD PBF_CylinderNumber ;
                } PARAMETER_BLOCK_FORMAT ;
typedef PARAMETER_BLOCK_FORMAT FAR *LPPBF ;

typedef struct
                {
                BYTE PBW_SpecialFunction ;
                WORD PBW_HeadNumber ;
                WORD PBW_CylinderNumber ;
                WORD PBW_SectorNumber ;
                WORD PBW_SectorCount ;
                LPBYTE PBW_TransferAddress ;
                } PARAMETER_BLOCK_WRITE ;
typedef PARAMETER_BLOCK_WRITE FAR *LPPBW ;

typedef struct
                {
                BYTE PBR_SpecialFunction ;
                WORD PBR_HeadNumber ;
                WORD PBR_CylinderNumber ;
                WORD PBR_SectorNumber ;
                WORD PBR_SectorCount ;
                LPBYTE PBR_TransferAddress ;
                } PARAMETER_BLOCK_READ ;
typedef PARAMETER_BLOCK_READ FAR *LPPBR ;
#endif
#pragma pack()
Note the pack(1) pragma.    Otherwise the C compiler will align the word

variables on an even boundary and the mapping will fail.

IOCTL Get Drive Parameters

Set DS:DX to point to a full IOCTL Parameter Block, set CL to 60H, set the
registers for subfunction 0DH and execute the interrupt.

IOCTL Set Drive Parameters

First use IOCTL Get Drive Parameters to prime an IOCTL Parameter Block.   
Then make the appropriate changes.    These would normally include the
device type, number of sectors per track, and total number of sectors.    Also
set the number of sectors in track in the word at offset 26H and follow it with
a pair of words for each sector.    The first word is the sector number starting
with one and the second word of the pair is the number of bytes in the
sector.    It should always be 512 (200H). Set the special function field --
offset 00H -- to 05H (it seems to work).    Point DS:DX to the parameter block. 
Set CL to 40H.    Set up the other registers for subfunction 0DH and execute
the interrupt.

IOCTL Read

First use IOCTL Set Drive Parameters to set the diskette drive to the right
mode for the diskette to be read.    Set the head, cylinder, and first sector
field of an IOCTL Read Parameter Block to the value for the first sector to be
read.    Set the number of sectors field to the number of sectors to be read.   
Place the address of the input buffer in the Transfer address field.    Point
DS:DX to the parameter block.    Set CL to 40H.    Set up the rest of the
registers for subfunction 0DH and execute the interrupt.

IOCTL Write

First use IOCTL Set Drive Parameters to set the diskette drive to the right
mode for the diskette to be written.    Set the head, cylinder, and first sector
field of an IOCTL Write Parameter Block to the value for the first sector to be
written.    Set the number of sectors field to the number of sectors to be
written.    Place the address of the output buffer in the Transfer address field. 
Point DS:DX to the parameter block.    Set CL to 41H.    Set up the rest of the
registers for subfunction 0DH and execute the interrupt.

IOCTL Format

First use IOCTL Set Drive Parameters to set the diskette drive to the right
mode for the diskette to be formatted.    Set the head and cylinder fields of
an IOCTL Format Parameter Block to the value for the track to be formatted.   
Point DS:DX to the parameter block.    Set CL to 42H.    Set up the rest of the
registers for subfunction 0DH and execute the interrupt.

SAB.INI File

The SAB.INI file is used to store information from one execution of the system
for use by another execution of the system.    The section of the SAB.INI file
that is used by SAB Diskette Utility starts with a [SABDU].    The items stored
in the file are:
Xpos= upper left corner of window
Ypos= upper left corner of window
Width= width of window
Height= height of window
LastSize= normal, iconic, or maximized code
CompareCompleted= number of completed compares
CompareCancelled= number of cancelled compares
FormatCompleted= number of completed formats
FormatCancelled= number of cancelled formats
ReadCompleted= number of completed reads
ReadCancelled= number of cancelled reads
WriteCompleted= number of completed writes
WriteCancelled= number of cancelled writes
UserName= name of user
UserCompany= company name
UserAddress1= street address line 1
UserAddress2= street address line 2
UserCity= state
UserZip= zip code
UserTelephone= telephone number
UserKey= user key
RegKey= registration key
RegType= type of registration code
InstallTime= time/date of initial installation

(seconds from 01/01/70)
DriveA= type of drive code
DriveB= type of drive code
Timer1= maximum timer value
Timer2= minimum timer value
Spool= disk spooling option code
Format= format option code

Definitions

Boot Sector
Cylinder
Disable
Diskette
Disk Spooling
Drive
Enable
Format Mode
File Allocation Tabel (FAT)
Hard Disk Image
Head
INI Files
Memory Image
Sector
Track

Diskette

A form of removable storage media -- sometimes also called a floppy disk.    It consists of an
outer protective envelop around a thin circular piece of magnetic media.    It is inserted into a
diskette drive that contains two sets of read/write heads -- one for the top layer of the
magnetic media and one for the bottom layer.    The read/write heads can only move along a
single line from the outer edge of the diskette toward the center and back.    The heads move
in fixed increments.    The diskette rotates in the drive and this allows the heads to access a
circular section of the magnetic media for each position.

Sector

A sector is the basic unit of storage on diskettes.    It consists of a single block of data --
usually 512 characters -- written or read as a group.    The normal format of a diskette has
the same number of 512 character sectors on each track.    Sectors are first created on a
diskette by formatting it.    This must be done before data can be stored on the diskette.

Track

A track consists of the circular area that a single read/write head can access from one
position as the diskette revolves in the drive.

Head

A head is the electromagnetic device that reads/writes the magnetic patterns on the
diskette.    A diskette drive has two heads -- one for each side of the magnetic media.

Cylinder

A cylinder consists of the circular area that the read/write heads can access from one
position as the diskette revolves in the drive. On a diskette a cylinder would contain two
tracks -- on for each of the read/write heads.

Boot Sector

The boot sector is the first physical sector on the diskette.    It is on the first cylinder on the
side of the diskette accessed by the first head.    It contains a parameter table that describes
the physical structure of the diskette (number of sectors per track and number of cylinders)
and its logical layout (reserved sectors, File Allocation Table (FAT) size, number of directory
entries in the root directory, etc.).    It also contains the "boot program".    When an IBM
compatible microcomputer starts it checks the A: drive for a diskette.    If there is one the
systems reads the boot sector into memory and begins executing the code in it.    If the
diskette has an operating system on it the boot sector will contain a program that will begin
loading the operation system.

File Allocation Table (FAT)

The File Allocation Table (FAT) contains one entry for each logical cluster on a diskette.    (A
logical cluster on a diskette contains either one or two sectors depending on the diskette
type.)    A file's entry in the directory will contain a pointer to the first cluster of the file.    The
corresponding entry in the FAT will contain a pointer to the next cluster of the file.    The FAT
entry for the last cluster of the file will contain hex FFs to indicate that there aren't any
more.    An entry in the FAT for an unallocated cluster will contain binary zeros.

Diskette Drive

A diskette drive is the device that the floppy diskette is placed into to read or write.    It can
be internal to the computer case or in a standalone case.    The normal sizes for IBM
compatible drives are 3 1/2 inches wide and 5 1/4 inches wide.    Each drive has two
read/write heads one of which is positioned on each side of the floppy diskette.

Menu Item Enable

A menu item is enabled if it respond to it's selection by generating a message to the
application.    Menu items that are enabled are dark in color.

Menu Item Disable

A menu item is disabled if it does not respond to it's selection by generating a message to
the application.    Menu items that are disabled appear gray.

Diskette Memory Image

If the user has not forced disk spooling of the diskette image and there is sufficient memory
available the sectors read from the diskette will be stored in memory buffers.    Each buffer
will contain the contents of one track .    The memory is obtained from Windows' global
memory pool and must be locked before each use and unlocked after each use.

Diskette Hard Disk Image

If the user has forced hard disk spooling of the diskette image or there is insufficient
memory available the system will store the sectors read from the floppy disk in a temporary
field on the hard disk.    The file will be created in the directory pointed to by the TEMP=
environment variable.

Disk Spooling
If the user has forced hard disk spooling of the diskette image or there is insufficient
memory available the system will store the sectors read from the floppy disk in a temporary
field on the hard disk.    The file will be created in the directory pointed to by the TEMP=
environment variable.

INI Files

An INI file is a file used by a Windows' application to store data between executions.    It can
be accessed using the ReadPrivateProfileString and WritePrivateProfileString functions.    The
file would normally be created in the Windows directory.

Format Mode

The format mode is the mode in which a diskette will be formatted.
For 3 1/2 inch diskettes it is either High Density (1.44 MB in 2880 sectors) or Dual Density
(720 KB in 1440 sectors).
For 5 1/4 inch diskettes it is either High Density (1.2 MB in 2400 sectors) or Dual Density
(640 KB in 1280 sectors).

Windows Keys

The keyboard topics below come from Help for Windows.    Choose from the following list to
review the keys used in Windows:
Cursor Movement Keys
Dialog Box Keys
Editing Keys
Help Keys
Menu Keys
System Keys
Text Selection Keys
Window Keys

Cursor Movement Keys

Key(s) Function

DIRECTION key Moves the cursor left, right, up, or down in a field.
End or Ctrl+Right Arrow Moves to the end of a field.
Home or CTRL+Left Arrow Moves to the beginning of a field.
PAGE UP or PAGE DOWN Moves up or down in a field, one screen at a time.

Dialog Box Keys

Key(s) Function

TAB Moves from field to field (left to right and top to bottom).
SHIFT+TAB Moves from field to field in reverse order.
ALT+letter Moves to the option or group whose underlined letter matches

the one you type.
DIRECTION key Moves from option to option within a group of options.
ENTER Executes a command button.

Or, chooses the selected item in a list box and executes the
command.

ESC Closes a dialog box without completing the command. (Same as
Cancel)

ALT+DOWN ARROW Opens a drop-down list box.
ALT+UP or DOWN ARROW Selects item in a drop-down list box.
SPACEBAR Cancels a selection in a list box.

Selects or clears a check box.
CTRL+SLASH Selects all the items in a list box.
CTRL+BACKSLASH Cancels all selections except the current selection.
SHIFT+ DIRECTION key Extends selection in a text box.
SHIFT+ HOME Extends selection to first character in a text box.
SHIFT+ END Extends selection to last character in a text box

Editing Keys

Key(s) Function

Backspace Deletes the character to the left of the cursor.
Or, deletes selected text.

Delete Deletes the character to the right of the cursor.
Or, deletes selected text.

Help Keys

Key(s) Function

F1 Gets Help and displays the Help Index for the application. If the
Help window is already open, pressing F1 displays the "Using
Windows Help" topics.
In some Windows applications, pressing F1 displays a Help topic
on the selected command, dialog box option, or system
message.

SHIFT+F1 Changes the pointer to so you can get Help on a specific
command, screen region, or key. You can then choose a
command, click the screen region, or press a key or key
combination you want to know more about.
(This feature is not available in all Windows applications.)

Menu Keys

Key(s) Function

Alt Selects the first menu on the menu bar.
Letter key Chooses the menu, or menu item, whose underlined letter

matches the one you type.
Alt+letter key Pulls down the menu whose underlined letter matches the one

you type.
LEFT or RIGHT ARROW Moves among menus.
UP or DOWN ARROW Moves among menu items.
Enter Chooses the selected menu item.

System Keys

The following keys can be used from any window, regardless of the application you are
using.

Key(s) Function

Ctrl+Esc Switches to the Task List.
Alt+Esc Switches to the next application window or minimized icon,

including full-screen programs.
Alt+TAB Switches to the next application window, restoring applications

that are running as icons.
Alt+PrtSc Copies the entire screen to Clipboard.
Ctrl+F4 Closes the active window.
F1 Gets Help and displays the Help Index for the application. (See

Help Keys)

Text Selection Keys

Key(s) Function

SHIFT+LEFT or RIGHT ARROW Selects text one character at a time to the left
or right.

SHIFT+DOWN or UP Selects one line of text up or down.
SHIFT+END Selects text to the end of the line.
SHIFT+HOME Selects text to the beginning of the line.
SHIFT+PAGE DOWN Selects text down one window.

Or, cancels the selection if the next window is
already selected.

SHIFT+PAGE UP Selects text up one window.
Or, cancels the selection if the previous
window is already selected.

CTRL+SHIFT+LEFT or RIGHT ARROW Selects text to the next or previous word.
CTRL+SHIFT+UP or DOWN ARROW Selects text to the beginning (UP ARROW) or

end (DOWN ARROW) of the paragraph.
CTRL+SHIFT+END Selects text to the end of the document.
CTRL+SHIFT+HOME Selects text to the beginning of the document.

Window Keys

Key(s) Function

ALT+SPACEBAR Opens the Control menu for an application window.
ALT+Hyphen Opens the Control menu for a document window.
Alt+F4 Closes a window.
Alt+Esc Switches to the next application window or minimized icon,

including full-screen programs.
Alt+TAB Switches to the next application window, restoring applications

that are running as icons.
Alt+ENTER Switches a non-Windows application between running in a

window and running full screen.
DIRECTION key Moves a window when you have chosen Move from the Control

menu.
Or, changes the size of a window when you have chosen Size
from the Control menu.

Maximize Icon

Selecting the Maximize Icon by "clicking" on it with the mouse will expand the current
application window to fill the entire screen.

Minimize Icon

Selecting the Minimize Icon by "clicking" on it with the mouse will reduce the current
application window to an Icon.

Sizing Border

The sizing border can be used to change the dimensions of the application's window.    The
border can be "grabbed" by positioning the mouse icon over it and holding down the left
button.    Moving the mouse will move the location of that portion of the border under the
mouse.    The portion of the borer moved can be the top,right side, left side, or bottom of the
Window.    It is also possible to change the locations of two adjacent sections of the border by
"grabbing" a corner and moving it.    Releasing the left button will cause the application's
window to shrink or grow to fill the new border.

System Menu

Selecting the system menu by "clicking" on it with the mouse will display a pop-up menu
with the system choices.    The system menu can also be activated by pressing the Alt key
followed by the space bar.    The system menu usually includes options for moving, resizing,
and closing the application window.    Other choices may be add by the application.

Title Bar

The title bar usually displays the name of the application and some additional information
related to the current state of the application.    It can be used to move the application's
window by positioning the mouse anywhere in it and pressing and holding down the left
button.    Moving the mouse will move the application's window.    Releasing the left button
will cause the application's window to occupy the new location.    The title bar can also be
used to maximize/restore the application's window size by "double clicking" on it..

Size Box

The size box is used to change the size of the application's window.

